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A B S T R A C T

This reflection article addresses a difficulty faced by scholars and practitioners working with numbers about
people, which is that those who study people want numerical data about these people. Unfortunately, time and time
again, this numerical data about people is wrong. Addressing the potential causes of this wrongness, we present
examples of analyzing people numbers, i.e., numbers derived from digital data by or about people, and discuss the
comforting illusion of data validity. We first lay a foundation by highlighting potential inaccuracies in collecting
people data, such as selection bias. Then, we discuss inaccuracies in analyzing people data, such as the flaw of
averages, followed by a discussion of errors that are made when trying to make sense of people data through
techniques such as posterior labeling. Finally, we discuss a root cause of people data often being wrong – the
conceptual conundrum of thinking the numbers are counts when they are actually measures. Practical solutions to
address this illusion of data validity are proposed. The implications for theories derived from people data are also
highlighted, namely that these people theories are generally wrong as they are often derived from people numbers
that are wrong.
1. Introduction

Let us begin our journey into people numbers by considering a well-
known quote about science (Kelvin, 1883).

When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot mea-
sure it, when you cannot express it in numbers, your knowledge is of a
meager and unsatisfactory kind: it may be the beginning of knowl-
edge, but you have scarcely, in your thoughts, advanced to the stage
of science …. —Lord Kelvin

This insightful quote is a homage to the central role of numbers in the
scientific method, stating quite explicitly that you must have numbers in
order to have knowledge. Leaving aside the obvious irony that this quote
is expressed not in numbers but in words, the position reflects the view of
many, if not most, researchers in the scientific disciplines that numbers
are essential for scientific inquiry. If there are no numbers, then it is not
really science, and we see this need for numbers in studies of and about
people in both the physical and online worlds.

The need for numbers is associated with a core tenet of science,
namely the principle of falsifiability (Popper, 2002), which is the
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construct that science must be inherently disprovable, or it is not science.
While the principle of falsifiability suffers a similar shortcoming of many
theories outside the physical realm in that it cannot explain itself (i.e., to
our knowledge, the principle of falsifiability is non-falsifiable), it is
instrumental in the development and wording of hypotheses in such a
way as aiming to disprove them. For the construction of hypotheses,
numbers are quite beneficial. For example, take the hypothesis: The
Beatles is the greatest band of all time. This statement does not pass the
principle of falsifiability. It is non-falsifiable. There are no numbers. Now,
take this reconstructed hypothesis: The Beatles has more Billboard Number
1 hit songs than any other artist. This hypothesis is falsifiable. It focuses on
numbers. We just need to get all the hit songs from the top of the Bill-
board charts, sum by artist, rank the sums most to least, and determine
which artist has the most number one hits. Spoiler – it is The Beatles! as of
the time of this study (Billboard, 2022).

Although the qualitative approach is widely used (Silverman, 2020),
numbers have a central place in the employment of the scientific method,
and this centrality applies to research focused on people. Undeniably
useful in many situations, the use of numbers can lead to a type of
‘illusion of validity’ (Kahneman & Tversky, 1973) when employing
people numbers, i.e., numbers at scale derived from data created by or
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about people. The illusion of validity is a cognitive bias of being over-
confident in the accuracy of interpretations regarding a given dataset. In
this article, we present another illusion, the illusion of validity con-
cerning the data, in that you believe the outcome of your analysis because
you believe in the accuracy of the data. However, when the underlying
data about people is flawed, this belief results in the illusion of data
validity.

We denote data about users, visitors, customers, audience members,
or other population segments or subgroups (i.e., people) as ‘people data’,
and numbers derived from this people data as ‘people numbers’. People
data is often collected at scale, usually online, often involving a proxy
variable, and perhaps entailing labeling via human or automated means.
Online people data, in particular, provides opportunities for modeling
social phenomena using digitalized people data at scale. Our focus is
primarily on this digital data about people, and the data can refer to
various aspects of people, including their online behaviors and attitudes.
People data is used for multiple purposes, such as opinion mining,
sentiment analysis, trend detection, election prediction, user segmenta-
tion, and so on. Examples of people data include content generated by
people, such as social media postings, online product reviews, and
comments on online platforms, and content about people, such as website
traffic numbers, metrics concerning online content, and analytics about
people's online behaviors. While problems in survey data (e.g., respon-
dent bias, confirmation bias, etc.: Bertrand & Mullainathan, 2001) and
unstructured textual data (e.g., noise, need for preprocessing, and la-
beling: Kaisler et al., 2013) are known, in our experience, researchers and
practitioners are much less aware of the challenges in structured people
data, such as social media usage statistics (e.g., number of video views,
likes, comments, shares) and website usage statistics (e.g., number of
sessions, bounce rate, conversions, etc.). These are examples of people
numbers based on or derived from people data. In combination with the
application of the scientific method to the analysis of this people data,
researchers and others tend to believe the findings, which are nearly
unquestioned as being accurate (Chinn & Brewer, 2001). However, what
if the numbers derived from this people data are wrong?

This question motivates our treatise, and the implications are quite
stark if people data and people numbers are wrong. If your people
numbers are wrong, it does not matter how rigorous your statistical
method is, how state-of-the-art your algorithmic approach is, or howwell
you fine tune your machine learning (ML) model. These approaches can
obviously provide clear and precise results. However, a clear and precise
result does not mean a correct one – one can be clear, precise, and wrong!
However, despite this obviousness, there is a tendency to ignore the
potential flaws in people numbers, focus on tuning the model, perfecting
the methods (Post & Votta, 2005), and trusting the results, thereby
manifesting the ‘illusion of data validity’. Our premise for this article is
that, more often than not, people numbers are likely to be wrong. By
wrong, we mean that these numbers are often presented and perceived as
if they are precise and accurate when they are not.

Validity is often discussed in terms of methods or instruments (Kim-
berlin & Winterstein, 2008); specifically how correct a method is in
measuring something, where correctness is the degree to which the re-
sults conform to the truth values. Therefore, validity is often understood
as the quality of a method or instrument being correct. However, many
data collection issues can degrade the validity of findings about people.
Data validity is how accurate the data is, where accuracy is the degree to
which the data conforms to true values (Boslaugh&Watters, 2008). If the
data has high validity, it means that the values in the dataset correspond
to true properties in the physical (or virtual) world (Diaconis & Efron,
1983). If the numbers do not correspond to the actual values, there is a
data validity issue. The data validity is low.

There are several factors that can affect data validity, and we argue
that much of the findings from people research are wrong because the
employed people data has low data validity. We argue that the data does
not accurately conform to the true values in the physical or virtual world,
or to the perceived accuracy of those using this people data. Overall, the
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issue of data validity is often overlooked by those working with people
data, especially when the dataset size is big (Heckman, 1979; Tufekci,
2014). We provide examples that support our view and discuss partial
solutions. Aside from scholars, the issue of numbers being wrong matters
to many organizational stakeholders, for example, those making pre-
dictions and decisions, or building ML or artificial intelligence (AI) sys-
tems based on these people numbers (Vecchio et al., 2018). Any
inaccuracies in the people data can propagate decision-making bias,
result in suboptimal resource allocation, and negatively affect perfor-
mance. Importantly, the AI system can propagate, not correct, errors in
people data, and given that there is ample evidence to show that most
predictions about people are wrong (Anderson, 2000; Epstein, 2019;
Ioannidis, 2005; Silver, 2015), this makes discussion and reflection on
this matter extremely important.

In the next section, we discuss some foundational data issues that
often emerged when there were no web analytics, AI, or digital data
collection, and statistics were counted by hand or using rudimentary
hardware. These data issues have not disappeared, even amidst digital
data collection and analysis technologies – they still prevail, take new
forms, and continue to teach us lessons about what matters in the pursuit
of knowledge via people numbers.

2. Foundational data issues

To lay the groundwork for presenting our specific concern with
people numbers, we highlight a non-exhaustive list of issues that threaten
data validity. We highlight these issues in an effort to weaken the reader's
faith in the validity of people numbers, which we believe is needed due to
overconfidence in these numbers in industry and among researchers
relying on ‘data’ as the answer (Siegel, 2010).

False Proxy: One often employs proxies in research. A proxy is a
variable that serves in place of another variable that one seeks to
investigate but, for some reason, cannot (Becker et al., 2016). Often,
when you cannot access the variable that you want, you select something
else that is easier to access, and this new variable represents an
approximation of what you actually want to investigate. For example, eye
fixations on a screen are proxies for cognitive attention (Salminen, Jan-
sen, et al., 2018a) because cognitive attention itself is difficult to access.
However, proxies can be false – called a false proxy. A false proxy is a
seemingly objective proxy that inaccurately reflects the variable that you
intend to investigate (Timberg, 2006). For example, online display
advertising platforms cannot directly determine the viewers that are
impacted by an ad. So instead, these platforms report how many times
the display ad appeared on a screen, called an impression. But an
impression does not determine impact, and in fact, it does not even
determine views. Furthermore, false proxies have the additional problem
of encouraging focus on the proxy instead of the real variable of interest.

Selection Effect: When conducting research, one has to make choices
concerning sampling the population of interest. However, these choices
introduce a potential problem in data collection called the selection effect
or selection bias (Infante-Rivard & Cusson, 2018). When a sample is
biased toward a specific subset of a target population, the data does not
reflect that actual population. For example, suppose you start a business
distributing online discount coupons for ordering from a restaurant
website, and you get paid based on the number of coupons redeemed at
the restaurant. Who are the best people to provide coupons to in order to
maximize your return? The best group of people would be those who
were already going to the restaurant website to place an order! Your
success rate would be great analytically, but your effort of distributing
the coupons would not increase the restaurant visits (at least to the extent
you may believe). Many online advertising and discount coupons suffer
from selection bias (Blake et al., 2015). These methods can, if not
appropriately managed, target people who are already going to purchase
the product anyway, giving the impression of great numerical returns.
For other examples using three social media platforms at the time of this
study, YouTube is known to be biased in favor of young males (Bughin,



Fig. 1a. The red dots represent bullet holes in places where the planes had been
shot. The blue boxes highlight the areas of interest. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 1b. The recommendation was to armor the places where there were no
bullet holes. The blue boxes highlight the areas of interest, e.g., figures repro-
duced after Survivorship bias (2022). (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of
this article.)

1 Segment size generated from https://acua.qcri.org/tool/SegmentSize
Estimator.
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2010), Pinterest in favor of young females (Blank & Lutz, 2017), and
TikTok in favor of Generation Z (Cervi, 2021). Nevertheless, despite
these sampling biases taking place in platforms used for research, these
biases are typically not rectified (or even recognized) when analyzing
user behavior (Ruths & Pfeffer, 2014), and the consequence is a distor-
tion of a statistical analysis due to a biased sampling method.

Missing Data: To conduct research, one typically relies on data. Data
concerning one's research can be conceptually divided into two cate-
gories – data you have and data you do not have. The data you do not have
is missing data. If you can identify the missing data, you can perhaps
account for it through, for example, simulated data. For example, if
people self-report their socio-demographic information (e.g., age and
gender) to online platforms, this information can be directly used (albeit
that it also potentially involves a self-reporting bias). When the person
provides no such information, the platforms can auto-complete it using
ML estimation (Ruths & Pfeffer, 2014), although the information is
probabilities (Jansen et al., 2013). However, if you are unaware of
missing data (i.e., unknown missing data), this can significantly affect
your research results and implications, as well as foreseeing highly
improbable events (Taleb, 2007). While not directly concerning people
data, a classic missing data problem involves the United States (U.S.)
Statistical Research Group during World War II (Ellenberg, 2015; Mangel
& Samaniego, 1984). The U.S. Army Air Corps asked the research group
to figure out how much to armor the planes so they would not get shot
down and still be fast, and the Corps provided data on where planes were
being shot (see Fig. 1a). What was the recommendation? The recom-
mendation was to armor the planes in all areas with no bullet holes (see
Fig. 1b). Here, the researcher correctly realized that there was a missing
data problem (Rubin, 1976), where the data from the Corps were from
the planes that made it back, and the missing data represented the planes
that did not make it back! Missing data is, therefore, a data collection
problem – you did not collect the range of data you need to address your
research.

Dimensionality Curse: The curse of dimensionality (Bellman, 1961)
states that the number of samples needed to estimate a function grows
exponentially with respect to the number of input variables of the
function. The curse of dimensionality with people data is that, as the number
of features increases, the number of people represented by the set of
features rapidly decreases (for experiment results in this area, see
Chapman et al., 2008). The number of attributes and the number of
people represented by those attributes are inversely correlated. To
3

illustrate this point, the SegmentSizeEstimator1 is a tool that generates
population sizes based on Facebook or Twitter accounts, as of the time of
this study. As shown in Fig. 2a, there were reportedly more than 43.3
billion Facebook accounts in the USA on the date we executed this search.
However, as shown in Fig. 2b, by adding just four attributes (language,
sex, age, interest), we are reduced to just 2.2 million accounts, a decrease
of 99.9949%. The curse of dimensionality is therefore a data construction
problem – you have too many features for the size of your dataset.

Flaw of Averages: When working with numbers representing many
people, one often employs the average to describe the people represented
by the numbers. However, this approach can lead to serious problems
due to the flaw of averages (Brown et al., 2018), which is that findings
based on the average are wrong on average. In fact, often when dealing
with people, the average person does not exist! An interesting example of
the flaw of averages is from a study in the 1950s. The U.S. Air Force
designed cockpits of new aircraft based on the average physical mea-
surements of 4000 pilots (Daniels, 1952). What was the result of this
seemingly reasonable approach? Pilot complaints and several airplane
crashes were, unfortunately, the result. Investigating the possible cause
of crashes and complaints, the researcher involved in the original study
of collecting pilot physical measurements examined the 10 most impor-
tant metrics, and compared the averages to the 4000 individual pilots.
What were the finding from this follow-on analysis? Not a single pilot in
the 4000 sample perfectly matched the average! Quoting from Lieutenant
Daniels:

As an abstract representation of a mythical individual most repre-
sentative of a given population, the ‘average man’ is convenient to
grasp in our minds. Unfortunately, he doesn’t exist. Instead of being
the easiest individual of a group to provide for, and themost common,
the “average man” is in reality a very rare specimen and very hard to
fit. (Daniels, 1952, p. 2, p. 2)

The average applies to a collection, group, population, segment,
sample, etc., yet is nearly meaningless at the individual level and hides
what is usually a distribution (Savage & Markowitz, 2012). The flaw of
averages is wrong in most contexts but nearly always wrong when

https://acua.qcri.org/tool/SegmentSizeEstimator
https://acua.qcri.org/tool/SegmentSizeEstimator


Fig. 2a. Number of Facebook accounts in the U.S., reportedly, at the time of study, more than 43.43 billion accounts.

Fig. 2b. Number of Facebook accounts in the U.S. at the time of study, with the addition of four attributes (English language, female gender, 55–64 age range, and
topical interest in ‘Acting’). A reduction of 99.9949%.
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dealing with many types of online people data. This is because many, but
naturally not all, methods relying on the average assume a normal dis-
tribution, whereas much of the online people data follows a power law
distribution. In power law distributions, the data is so skewed that a large
percentage of the population would deviate from any ‘average’. The flaw
of averages is a data analysis problem – the average person does not exist.

Deception of Statistics: You might think the flaw of averages is a
straw person issue that can be remedied by using more aggregate metrics,
such as standard deviation (as in ANOVA testing) or median (as in chi-
squared testing). Although a soothing position, you would be incorrect,
as aggregate metrics can also be extremely misleading. Statistics alone
about a dataset do not adequately depict the data set. One example is
Anscombe's quartet, comprising four data sets with practically identical
descriptive statistics yet having different distributions and appearing
very different when graphed (see Fig. 3). Statistician Francis Anscombe
constructed the quartet in 1973 to demonstrate the importance of
graphing data when analyzing it and the effect of outliers and other
influential observations on statistical properties (Anscombe, 1973;
Chatterjee & Firat, 2007; Matejka & Fitzmaurice, 2017). Of course, one
has to be careful when relying only on graphical representations (Jones,
4

2006), as graphs can also be deceiving. The deception of statistics is a
data analysis problem – perusing only statistics does not tell the complete
story.

Do you need a real life example of the hazards of looking only at
statistics and not the distributions? Look no further than the AAirPass
program from American Airlines (Oyer, 2014), which ran from 1981 to
1993. For about $1,000,000 USD, you could get two business class airline
tickets anytime to anywhere for life at no cost, earn miles, and have a
dedicated company agent handle your flight arrangements. Because most
people do not fly that much, and even themost frequent flyers would take
a long time to rack up a million dollars’ worth of flying, by some statis-
tical metrics (e.g., median or mean), the AAirPass was a good deal for
American Airlines. However, what about outliers? Here, outliers are the
people who fly a disproportionate number of times – those who fly a lot!
People data typically have outliers, and airline people data has some
extreme outliers (Thirumuruganathan et al., 2021). Also, changes to
services can alter behavior (Jung, Salminen, & Jansen, 2022), in this
case, by encouraging people to fly more since the flights are now free to
those who purchased the passes. American Airlines reportedly sold just
under 30 of these passes before ending the program; the AAirPass



Fig. 3. A depiction of Anscombe's quartet, four data sets that have practically
identical descriptive statistics yet have very different distributions.21

3 We believe rightfully so.
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program has since cost the company tens of millions of dollars in costs
and lost revenue, with some passengers racking up millions of miles per
year, and, as of this writing, the program is still costing the company. The
purchaser of just one pass cost the airline more than $21M USD (Bri-
quelet, 2012), and others have reported it as one of the best purchases
they had ever made (Freeman, 2018).

Simpson's Paradox: Simpson's Paradox (Simpson, 1951) is a phe-
nomenon where a statistical relationship between two variables emerges,
disappears, or reverses when the variables are examined for sub-
populations. For example, one may have a treatment for a given disease
that is non-effective when looking at the entire sample. However, when
segmenting the sample, say by biological sex, the treatment is effective
for all sexes! The paradox is that based on the entire sample, you would
not recommend the treatment, but you would recommend the treatment
for every sub-population in the sample. Several articles discuss Simpson's
Paradox, along with the varieties and why it occurs (Ameringer et al.,
2009; Blyth, 1972; Hern�an et al., 2011; Wagner, 1982). Lerman (2017)
provides multiple examples of how grouping the data can yield drasti-
cally different findings concerning social media behavior. Even though
there are methods to test for Simpson's Paradox (Kievit et al., 2013;
Lerman, 2017; Pearl, 2022), these are rarely used in research at the time
of this writing, perhaps because they require ‘going out of your way’ to
find potential problems in your data (a practice most people tend to
avoid; for a discussion of this human behavior, see the many writings on
either the Principle of Least Effort or satisficing).

GroundTruth or CrowdTruth Problem: Online people data is often
in the form of text, such as social media posts. So, to work with it or
convert it to numbers, researchers often label this textual people data via
human annotation (Aroyo &Welty, 2013; D. Wu et al., 2013), such as by
topic, sentiment, or toxicity, in order to map the labels against some
numbers they can work with. Labeling is often done by having multiple
labelers evaluate a snippet of online text to assign a label (Snow et al.,
2008) concerning, for example, whether or not a social media post is
toxic (Almerekhi et al., 2020, pp. 3033–3040). This is posterior labeling –
classifying non-numerical people data using some theoretical construct
after the fact to achieve some ‘ground truth’, relying on the supposed
wisdom of the crowd (Surowiecki, 2005). However, crowd labeling is not
crowd wisdom. Posterior labeling has many pitfalls (for a discussion of
the myths of human annotation, see Aroyo & Welty, 2015), including
5

‘What if there is no ground truth?‘. Many labeling tasks try to fit labels to
people data where the labels may be inappropriate, or the labels are
subjective (Alonso et al., 2015; Wiebe et al., 1999). Another issue is
quality control, and many publicly available ‘ground truth’ datasets are
riddled with obvious errors (e.g., Chen, 2022). For example, in an eval-
uation of hate data sets in preparation for research (Salminen, Veronesi,
et al., 2018b), there was a mislabeling of seven percent to thirty percent
seen in the available ‘gold standard’ datasets (Waqas et al., 2019),
including many highly used hate datasets. Others point out the issues of
evaluating labeled data across models (Fortuna et al., 2021), and similar
issues appear in other domains, like recommender systems (Dacrema
et al., 2021). There is also the issue of random labels with majority voting
schemes (Salminen et al., 2021). The GroundTruth or CrowdTruth
problem is, therefore, a data creation problem – posterior labeling can
result in low data validity.

Big Data Fallacy. The law of large numbers argues that the sample's
mean approaches the sample population's actual average as a sample size
increases (Kwak & Kim, 2017). This concept is often, either implicitly or
explicitly, taken as a justification as to why ‘big data’ (i.e., millions or
billions of samples) cannot be wrong. However, there are contrary ar-
guments and evidence. The big data fallacy implies that more data does
not translate to more information in equal measure (Wu, 2012). A reason
for this can be a redundancy (i.e., replication of the same data, such as
retweets) that decreases the signal-to-noise ratio (i.e., the amount of
useful information compared to non-useful information) (Aizawa, 2003),
but the growth of a dataset is problematic even when the signal-to-noise
ratio remains constant. For instance, assume a signal-to-noise ratio, R,
and a dataset D that consists of two subsets, S for signal and N for noise.
As D increases and R remains constant, both S and N increase, but the
absolute number of N quickly becomes overwhelming (see Fig. 4). The
implication is that if an error occurs in a small sample of data, making the
sample ‘big’ does not mystically eradicate this error. Lazer et al. (2014)
refer to ‘big data hubris’ (p. 1203), meaning that some believe large
enough datasets are enough to not consider whether the data meet the
assumptions of a given method – if predictions on a test set work, then
traditional concepts about data (e.g., distributions and variable de-
pendencies) do not matter. However, this is a gross mistake that can lead
to developing ‘part flu detectors, part winter detectors’ (Lazer et al.,
2014), for example.

Subjective Objectivity: Data-driven decision making (Provost &
Fawcett, 2013) is the process of making decisions based on data rather
than intuition, and is (supposedly) employed by nearly every business,
organization, and governmental agency. Metrics can suffer from an issue
of performativeness, in that metrics can guide human action similarly to
words (Lemmon, 1962) - numbers are transferred to reality through
interpretative decision making. However, the use of data for driving
decision making can give not true objectivity but the perception of ob-
jectivity, or subjective objectivity, which is assessing data based on opinion
or feeling using one's own perspective or preference. For example, sup-
pose a researcher conducts a large-scale survey analysis of faculty at
several major universities, including collecting salary data. After the
study, the researcher presents this result, ‘Senior professors earn 25%
more than their junior counterparts.’ What do you expect the general
reaction to be? Most would expect the reaction to be something along the
lines of ‘That's reasonable’. The researcher then presents this result from
the study. ‘Male professors earn 25% more than their female counter-
parts.’What do you expect the general reaction to be? Most would expect
the reaction to be something like, ‘That's an outrage!‘3 This is an example
of subjective objectivity – we believe data-driven decision making is
objective. However, in reality, nearly every decision has objective and
subjective elements, i.e., a degree of judgment (Kahneman et al., 2021),
and the interpretation of numbers is nearly always “founded on personal
impressions of phenomena” (Bowley, 1901, p. 6). For example, Zgraggen,



Fig. 4. Fictitious data showing the effect of the absolute number of noisy samples increasing with the overall size of the dataset. R is signal-to-noise ratio.

Table 1
Foundational data validity issues and their definitions.

Data Validity Issue Definition

False Proxy A seemingly objective proxy that inaccurately reflects
the variable that you intend to measure.

Selection Effect A sample is biased toward a specific subset of a target
population; the data does not reflect the actual target
population.

Dimensionality Curse As the number of features increases, the number of
people represented by the set of features rapidly
decreases.

Flaw of Averages The assumption that the average applies to an
individual; the average person does not usually exist.

Missing Data The data concerning a phenomenon is not complete.
Deception of Statistics The use of aggregate metrics does not fully describe a

dataset.
Simpson's Paradox A statistical relationship between two variables

emerges, disappears, or reverses when the variables
are examined for subpopulations.

GroundTruth or
CrowdTruth Problem

Trying to fit labels to people data where the labels
may be inappropriate or subjective.

Big Data Fallacy More data does not translate to more information in
equal measure.

Subjective Objectivity Assessing data based on opinion or feeling using one's
own perspective or preference without
acknowledging this subjective element.
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Zhao, Zeleznik, and Kraska (2018) investigated how people generate
insights from data visualizations. In the experiment, more than sixty
percent of the insights users generated were false. Similar to the Gestalt
theory from cognitive psychology, where people see patterns in data that
do not exist (Desolneux et al., 2007), subjective objectivity implies that
data interpretation nearly always includes an interpretative component
that is often not acknowledged.

We summarize these threats to data validity in Table 1 immediately
below.

3. Conceptually counting, mathematically measuring – why
people numbers are often wrong

Even with the aforementioned validity issues of data collection,
analysis, and interpretation, our premise is that there is a yet more
fundamental problem with many people numbers. Specifically, we are
referring to the situationwhere the people numbers are just wrong. In our
experience, working with many people datasets, collecting people data,
and generating people numbers from said data, people numbers can have
a low validity in terms of representing what the data conceptually should
represent, or the values of that data. Inappropriately, people numbers are
often presented as being valid, precise, and arithmetic accurate. With
2 Plots generated from https://matplotlib.org/stable/gallery/specialty_plots/
anscombe.html.
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this, researchers and others often perceive the people numbers are valid,
precise, and arithmetic accurate when they are not. This presentation and
perception fallacy results in findings that are inaccurate and implications
from said findings that are faulty.

Let us take some examples from the 2020 U.S. elections. The U.S.
holds major elections every four years for the president, congress, gov-
ernors, and many other down ballot offices. The U.S. has two major
political parties at the time of writing, the Democrats – the Blue party,
and the Republicans – the Red party. Polling data prior to the 2020
elections, at all levels, showed a blue wave (i.e., the Blue Party would
score major wins). Yet, the poll numbers were wrong in this regard, and
the Blue Party eked out a narrow victory (Keeter et al., 2021). What about
other data sources? Analysis of social media data prior to the same 2020
U.S. presidential election showed major support for the Red Party
(Sharma et al., 2022). The social media analysis was also wrong in this
regard, where the social media volume of posts was inversely correlated
with votes. The Blue Party got more votes than the Red Party. Think of all
the social media research and articles published from that data - what if
most of it is wrong? In another case, economic data on purchases of
presidential campaign merchandise prior to the same 2020 election
showed major support for the Red Party (Bradsher, 2020). The economic
data was also wrong in this regard, and the sales of merchandise were
inversely correlated with votes; the Blue Party got more votes than the
Red Party.

All of these examples are based on numbers derived from people data.
This data was then used to make recommendations and predictions, and
the predictions turned out to be wrong. So what could cause people data
(drawn from multiple sources – polls, social media, economics, online
analytics, etc.) about the same event all to be wrong?

Our premise is that there is an underlying data validity issue with
most of this people data that directly affects the soundness of people
numbers derived from them and, therefore, the decisions made (and
theories) based on these numbers. The issue is that there is a miscon-
ception about what the people numbers are. Namely, these people
numbers are counts, when in fact, people numbers are most often mea-
sures when online data or data at scale is involved. Counting is adding the
number of items in a group to determine the quantity – an arithmetic
operation. When counting, one ends with a precise numerical value of the
number of items – a count. Measuring is assessing the amount of some-
thing – a calculating or estimating operation. A measure is a numerical
value of the extent of something. Unlike a count, a measure has an error
rate, and in situations like the close election presented earlier, error rates
can matter a lot! With people numbers, thinking you are counting when
you are really measuring or that the numbers presented are counts when
they are really measures, can result in an illusion of data validity. The
numbers appear valid, precise, and accurate, but they are not.

Consider the following question, does a large social media platform, like
Facebook at the time of the study, know the exact number of its users at a given
time? No, Facebook does not (Greenspan, 2019; Morse, 2019). Despite
Facebook being able to digitally monitor its user base (a medium that one

https://matplotlib.org/stable/gallery/specialty_plots/anscombe.html
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Table 2
Summary of results comparing Google Analytics and SimilarWeb for total visits,
unique visitors, bounce rate, and average session duration. Difference uses
Google Analytics as the Baseline. Results based on Paired T-Test for Hypotheses
Supported.

Metric Google Analytics SimilarWeb T-test and Result

Total Visits (M ¼ 6.82, SD ¼
0.31)

(M ¼ 6.66, SD ¼
0.29)

t (85) ¼ 6.43, p <

0.01.
Unique Visitors (M ¼ 6.56, SD ¼

0.26)
(M ¼ 6.31, SD ¼
0.25)

t (85) ¼ 12.60, p
< 0.01

Bounce Rates (M ¼ 0.58, SD ¼
0.03)

(M ¼ 0.63, SD ¼
0.02)

t (85) ¼ �2,96, p
< 0.01

Average Session
Duration

(M ¼ 2.15, SD ¼
0.05)

(M ¼ 2.47, SD ¼
0.71)

t (85) ¼ �8.59, p
< 0.01
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thinks would solve the counting problem), it does not know the exact
number of its users at a given time. Neither does Twitter (Bradshaw,
2022), another large social media platform at the time of the study. This
is because of a myriad of reasons: for example, new users join and old
ones exit continuously, making it hard to track event accounts (which is a
proxy variable for users) in real-time. Also, there is a non-trivial number
of bot and fake accounts; some of these Facebook can detect and remove,
but not all. Finally, what is a ‘user’ anyway? If a person has not logged in
to an account for two months, should they still be included in the user
base? What if they have not logged in for two years? What if the person is
deceased? Such cases illustrate the difficulty of obtaining correct
‘counts’, even where people can be tracked digitally in a relatively
controlled ecosystem.

4. Case study illustrating people numbers being wrong

To illustrate that numbers derived from people data are often not
counts but instead measures, we present a case study of people numbers
using website traffic metrics. The results of this research are reported in
full in Jansen et al. (2022), but here, we present what is needed to
highlight the ‘count vs. measure’ misconception and the errors resulting
from this misconception. The case study is in the area of web analytics; a
sub-area of analytics that examines web traffic data. Where do you get
web traffic data? Approaches to collecting website analytics can be
grouped by the focus of data collection, namely: (a) user-centric, (b)
website-centric, and (c) network-centric (Jansen et al., 2022).
User-centric data is gathered via a panel of users, which is tracked by
software installed on the users' computers, such as a plugin for a web
browser. Website-centric data is gathered via software on a specific
website. Most websites use a site-centric approach for analytics data
gathering, typically employing cookies and/or tagging pages on the
website. Network-centric data is gathered via observing and collecting
traffic in the network. There are various techniques for network-centric
analytics gathering, with the most common being data purchased or
acquired directly from Internet service providers.

Google Analytics is a website-centric analytics platform and is the
most popular site analytics tool in use (W3Techs, 2020) at the time of the
study. Google Analytics tracks and reports website analytics for a specific
site. SimilarWeb is a service providing web analytics data for one or
multiple websites, and an industry leader in this area at the time of the
study. SimilarWeb uses a mix of user, site, and network-centric data
collection approaches to triangulate data (Salkind, 2010; SimilarWeb,
2022b) but relies heavily on its user panel data.

Our motivational research question was, how do the analytics compare
between the two services? For our analysis, using the Majestic Million (a
creative commons list of 1 million websites), we identified 86 sites with
both Google Analytics and SimilarWeb metrics (SimilarWeb, 2022a,
2022c; 2022a). We then collected the data for four core web analytics
metrics – total visits, unique visitors, bounce rate, and average session
duration – for each of the 86 websites. The definition of each metric is:

� Total Visit - Sum of times that at least one website page was loaded
during a measurement period.

� Unique Visitors - Sum of actual people who have visited a website at
least once during a period.

� Bounce Rate - A bounced visit is the act of a person immediately
leaving a website with no interaction.

� Average Session Duration - The average length of time that visitors are
on the website.

Since our data does not follow a normalized distribution, we trans-
formed our data to a normal distribution via the Box-Cox transformation
(Box & Cox, 1964). We used the log-transformation function, log (vari-
able), and then executed a paired t-test on the four groups to statistically
compare the differences between total visits, unique visitors, bounce
rates, and average session duration on the transformed values. The
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reported values for total visits, unique visitors, bounce rates, and average
session duration for Google Analytics and SimilarWeb differ significantly,
as shown in Table 2 immediately below.

As shown in Table 2, the statistical testing results indicate a difference
in the number of total visits, unique visitors, bounce rate, and average
session duration between the two services.

However, underlying motivating questions remain, which are: How
close are the reported values to the ‘true’ values? Which approach is the most
‘right’? Which approach is the most accurate? Which approach best reflects
reality? Regardless of the statistical testing results, these motivational
questions are more challenging to address, as no gold standard exists for
such an analysis. However, there is a ‘true’ number of visits, visitors,
bounces, and average session duration. Compared to this reality, both
analytics services are likely to be wrong in varying degrees of error –

these numbers are measures, not counts! – and for different reasons
intrinsic to how each service determines what is traffic and what are
events.

We conducted a deductive analysis using a likelihood of error (Wil-
liamson et al., 2002) for each of our four metrics for our two services. For
bounce rate, both Google Analytics and SimilarWeb are conceptually
incorrect due to the practical issues of measuring a bounce visit. Con-
cerning average session duration, again, for this metric, both Google
Analytics and SimilarWeb are conceptually incorrect due to the practical
issues of measuring the end of a session. For total visits, both are likely to
be at least imprecise, as there is room for noise in the visits. Finally,
regarding unique visitors, analytics services typically rely on a combi-
nation of cookies and tags to measure unique visitors, which generally
results in overestimating unique visitors due to issues such as people
clearing cookies, switching devices, or incognito browsing. So, again, the
number from both services is likely to be wrong.

For all four major web traffic metrics, both approaches are inaccurate
(i.e., wrong) due to conceptual reasons and, most likely, imprecise due to
technical reasons. What is the problem? In our perspective, along with
the challenges of collecting online data, it is a misconception to view web
analytics data as ‘counting’. In most cases, web analytics is not counting;
instead, it is ‘measuring’. Measuring has several sources of errors (e.g.,
sampling methods, measuring implementation – i.e., problems with who
is doing the measuring, measurement instruments, and metric analysis).
It is well known that there will be an error rate (�x) for nearly any
measure (Bovbjerg, 2020). No measure or measurement tool is perfect,
including online analytics services, and people numbers can be particu-
larly messy. However, and this is a critical problem, each of these platforms
presents the numbers for these metrics as if they are precise counts. Therefore,
those viewing the number often proceed as if these numbers were precise
counts, which they are not.

We and other researchers are often forced to use the numbers sourced
from these black-box systems and application programming interfaces
(APIs) when using data from the major platforms (e.g., Jansen &
Schuster, 2011; Jiang et al., 2018; P. Wang et al., 2003; Y. Wang et al.,
2021). The API and system output numbers appear precise, giving the
impression of accuracy, and their accuracy is often bolstered by claims
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that the platform uses sophisticated AI or ML models to come up with the
numbers. Yet, the accuracy of the numbers is rarely presented or inves-
tigated, as done by Jansen et al. (2022). The little evidence concerning
this area should make you worried, to say the least. For example, at the
time of this study, Facebook can predict a person's interests with seventy
percent accuracy (Sabir et al., 2022), equating to a thirty percent error
rate (which is an enormous error rate, given that three out of ten pre-
dictions is incorrect!). Google Ads, a major online advertising service at
the time of writing, uses ML for targeting and budget optimization, but it
can make a number of (hidden) errors, especially for low-resource lan-
guages (Hasan et al., 2020) and small business scenarios where the data
is limited. Moreover, platforms frequently change their data processing
rules with little or no communication with those accessing the data
(Ruths& Pfeffer, 2014), even though the platform changes may affect the
data-generating processes (Lazer et al., 2014) or the interpretation of that
data (Jung, Salminen, & Jansen, 2022). There are many reasons to be
worried about these errors, one of which is that decision-making is
increasingly automated, as downstream AI and ML applications rely on
the people numbers provided by the platforms without questioning them.
Furthermore, even when humans make decisions, they increasingly
depend on people numbers, with few questioning their validity.

To caveat and to be fair, we must bear in mind that online platforms
were not designed for people research; they were designed to be
computationally efficient and scalable, and to perform a commercial
function. Practicality and research value can be at odds. For example,
platforms may discard meta-data that would be valuable for research, or
not save it to begin with (Paxson, 2004; Ruths & Pfeffer, 2014). As stated
by Lazer et al. (2014, p. 1203), “most big data […] are not the output of
instruments designed to produce valid and reliable data amenable for
scientific analysis”. Instead, the data is affected by algorithmic dynamics,
i.e., changes made by engineers to tweak the system's commercial per-
formance and by users using the service (Anderson et al., 2020). Changes
in algorithms and user behavior are confounding variables that affect
data quality validity (Jung, Salminen, & Jansen, 2022), and researchers
are often unable to quantify this effect with the platform data alone.

We present this case study from the analytics area, but the issue of
presenting numbers as counts when they are really measures occurs
across most fields that rely on people numbers, especially numbers
derived from large volumes of people data that are increasingly common.
This sizeable people data is too often taken for granted by those who
analyze the data, those who review the data, and those who write about
the data. Yet, data scientists working with a perfect algorithm using
flawed data – regardless of the data volume –will still end up with flawed
results. Authors publishing results based on Twitter, Facebook, Google,
or other large service datasets can still risk false predictions or inferences
(Lazer et al., 2014), despite the size of their datasets. If the data is, for
example, demographically biased to young adults, it does not matter if
the absolute quantity is 100 observations or 1,000,000 observations – in
both cases, the dataset represents young adults more than other groups,
which is a selection bias. Nevertheless, judgments are often clouded by
the sheer volumes of data, which is falsely believed to reflect the quality
of the data. So, although ‘quantity does not equal quality’ sounds
self-evident, it is often overlooked in the bewilderment of big numbers.

As an example, reviewers of research submissions might be less crit-
ical of data quality when the data is extracted in large numbers (e.g.,
‘millions of clicks’) from a big company like Google, Facebook, or others,
despite the possibility of the data having hidden errors. Even if the
reviewer would question the data, the authors often have no way of
ascertaining the data quality, and a standard response is along the lines
of, “If Google is correct, so are we; Google is one of the biggest companies
in the world, so they should be correct, right?“. As such, the data validity
issue is often left at that – an ‘appeal to authority’. Note that while the
people working in Google, for example, might know more details about
data quality, most researchers publishing data sourced from the big
technology companies operating the data ecosystem do not work in these
companies, or they work in positions where they do not have intimate
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access to the precise data collection methodologies. Therefore, even if
they acknowledge the numbers as measures, the researchers relying on
this people data cannot directly assess its validity. So, this people data is,
to a large extent, secondary data, even though in research, it is typically
referred to and treated as primary data. This distinction matters quite a
bit, as secondary data is typically considered less trustworthy than pri-
mary data in science (Venkatraman & Ramanujam, 1987).

5. Discussion and implications

“All empirical research stands on a foundation of measurement.”
(Lazer et al., 2014, p. 1204). Nevertheless, even when we know that we
are measuring, we researchers often present the results as if we are
counting. This gives the allusion of an arithmetic process – valid, precise,
and accurate, whereas, in reality, most people numbers are often not.
These numbers are seemingly precise but not accurate in reality. For
example, “how many visitors did I have on my website last month?” can
be answered by web analytics software, but the answer is not precisely
correct. How much off is it from reality? This information is often not
provided. So, the issue is not that in the absence of error margins, logical
deductions cannot be made; the issue is that researchers and stakeholders
will make logical deductions, regardless. So, there is a need to fully un-
derstand the context of perceiving you are not counting but instead
measuring. To shed light on this, we discuss three points: specifically, (a)
the foundations for why you think you are counting, (b) why you don't
count, and (c) what to do when you are measuring.

5.1. Why do we think we are counting when we are measuring?

Where does this illusion of data validity originate from? Why do we
often view ourselves as ‘counting’ when the numbers are really from
‘measuring’when working with people data? There are most likely many
factors involved, but three reasons seem apparent – statistics, simplicity,
and enumeration.

Statistics: One possible source is the sciences’ reliance on quantita-
tive methods and algorithms, which are, at their core, statistical para-
digms (Friedrich et al., 2021). Many people in the sciences start their
academic careers focused on numbers (i.e., analytics) and quantitative
approaches (i.e., statistical and/or algorithmic methods), and it is not
difficult to see why. Working with numbers is both difficult and easy;
difficult in that some of the statistical and algorithmic methods are
challenging to master, but easy in that the results from these methods are
relatively clear and precise (i.e., one always gets an output, as long as the
input is in the correct form). So, if you have the numbers, these scientific
methods are rigorous, and the results are clear and precise.

So, this counting versus measuring misconception may be grounded
in statistics, on which many forms of analytics, algorithms, and ML
models are based or based on the techniques that these methods employ.
Statistics is “the science of counting” (Bowley, 1901, p. 7), and many
statistical approaches rely on averages (Bowley, 1901, p. 7). Many (but
not all, see (Reid, 2003)) foundational statistical techniques were
developed for volume datasets where you are counting. However, much
of the online people data is not small, and the volumes can be quite large.
Even after years, decades actually, of working with uncertainty (Lindley,
2000) and algorithmic methods for large datasets, the ‘concept of the
count’ still pervades the field of statistics and certainly the application of
statistical techniques in other domains. It is not easy acknowledging this
shift from counting to measuring. There is comfort in ignoring the data
validity issues by assuming that our people numbers are accurate counts
when it is clear they often are not, as shown in our web analytics
example. When defined as precise counts, truth (as in an arithmetic
number) is usually a fallacy in collecting and analyzing people numbers
at any large scale (Galeano & Pe~na, 2019).

Simplicity: Another reason for the counting versus measuring
misconception may be due to the need or the desire for simplicity. As
seen with the web analytics tools in our case study example, people
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numbers presented as if they were accurate counts are clear, instead of
addressing the messiness when indicating that the numbers are mea-
surements (e.g., showing confidence intervals might appear ‘complex’
and ‘messy’ to stakeholders). Therefore, these measures are often passed
off as precise arithmetic counts, which is a ‘fallacy of precision’ that is
counterproductive for people number research. This presentation desire
is mainly due to an aspiration for user friendliness and simplicity, where
it is more convenient to show a precise number, even when that number
does not truly reflect precise information. Moreover, many of the
commonly used statistical analysis and visualization techniques
employed do not like error rates, as the presentation of even simple
metrics makes the discussion of such numbers ominously more
complicated.

Enumeration: In grade school, we often learn to count with exercises
such as images of discrete entities, such as apples. If there are three ap-
plies in the image, we learn to enumerate each one to get the total
number – three. Like our apple, a person is a discrete entity. So it seems
conceptually appropriate when we are working with people that the
numbers are counts, and our work with these numbers is an enumeration
(i.e., counting). However, in reality, when dealing with people data at
scale, it is rarely enumeration. Instead, the scale of people is so large that
the practicality prevents enumeration. Also, instead of working directly
with people, we often use proxies, such as accounts, visits, posts, com-
ments, unique visitors, clicks, and so on, which again seems like
enumeration, but it is not. So, although our entities (i.e., people) are
discrete, the numbers that we actually work with often are not.

5.2. Why Don't we count instead of measure?

Okay, then the obvious question becomes, why don't we count rather
than measure? It turns out that counting is really hard to do with people
data for at least two reasons – complexity and scale.

Complexity: Analysis of people data at first appears to be a simple
operation that you can perform or which can be done automatically.
However, even with relatively small volume datasets, people can make
mistakes or can disagree on how to categorize them. These sources of
error have by no means disappeared with the introduction of the tech-
nology that is often used on much larger people datasets. For example,
two ML models, trained on the same people data, can disagree on which
category a sample should belong to or the representation of that data
(Jansen et al., 2021). As shown in our case study, two web analytics
installations configured independently can report different numbers,
causing decision makers to perhaps draw opposing conclusions. Different
sentiment analysis tools rating the same text samples can give highly
different results (Jung, Salminen,& JansenB, 2022). As another example,
human annotation is often a highly subjective task. However, it is simpler
to treat numbers inferred from the text as reflecting the meanings of that
text, even though the summary scores are fallible. So, the determination
of quantity, classifications, sentiment, toxicity, etc. is not straightfor-
ward, and although data about what people mean is often wrong, it is too
complex to account for the errors when presenting the results.

Essentially, there are two general types of complexities that often
prohibit you from counting: (a) technical and (b) paradigmatic. Technical
problems deal with the challenging issues of data collection and impre-
cision. From our web analytics case study, for example, many technical
issues limit your ability to actually ‘count’ what you want to tally.
Research on the collection of online data (Aldous et al., 2022; Almerekhi
et al., 2020, pp. 3033–3040; S. Jung et al., 2021; Salminen et al., 2022)
has encountered many challenges. These include insufficient data
collection support via APIs in collecting social media data that makes
amassing people data hard or collected people data out of date, a diffi-
culty to obtain sequentially critical data, which causes corrupted people
data, and unpredictable changes in data collection support versions that
result in inconsistent numbers. Our analysis of search logs, for example,
shows that about ten percent of the query data is non-useable due to
missing or corrupted data records (Jansen, 2006). The case gets even
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more complicated with paradigmatic choices, such as what label to give a
social media post, the degree of sentiment expressed, etc. For such
questions, there can be no definitive answers. While this disagreement
should be a signal (Silver, 2015) that the phenomenon should be inves-
tigated, such disagreement is messy and complex, so it is often easier to
consider it noise (see Aroyo & Welty, 2015 for a discussion of the com-
plexities of Ground Truth vs. Crowd Truth). In summary, due to the
complexities of people numbers, hiding the complexities of measures by
presenting them as counts is much more comforting.

Scale: Even with small datasets, there is the possibility of errors, and
the processing of people data at scale can get very difficult. At a large
scale, counting becomes nearly insurmountable, and one cannot obtain
absolute accuracy when people numbers surpass certain limits. At scale,
arithmetic exactness is nearly unattainable: “[G]reat numbers are not
counted correctly to a unit, they are estimated.” (Bowley, 1901, p. 3). So,
at scale, people numbers become the science of estimation (or the science
of uncertainty: Lindley, 2000) – in other words, they are measuring.

As an illustrative example, let us look at a simple comparison task at
different scales: counting chickens. Chicken data should be more
straightforward to work with than people data, but the underlying scale
issue is the same. There are insurmountable data validity issues when
dealing with chickens at scale. The counting of chickens on a small family
farm is an achievable task. The scale is small. What about counting all the
chickens in the world? Due to the scale and temporal constraints,
counting all the chickens worldwide is a practical impossibility. So, we
are forced to measure. Howwould wemeasure the number of chickens in
the world? Well, we could use a sampling technique. Take a small
number of representative rural and urban areas and count the number of
chickens in each of these areas. One could arrive at some chicken-per-
square-meter numbers, which would then introduce error rates. With
this number and the number of square meters, we could measure the
number of chickens worldwide. This method has flaws, including that
there are wild and feral chickens that the above method does not capture.
However, when reporting the number of chickens, these methodological
flaws are usually ignored, as the United Nations confidently states that
there are 33 billion chickens in the world as of 2020 (United Nations,
2020); one has to dig quite deep to find the ‘estimated’ qualifier. The
challenges, errors, and flaws with our chicken data are similar to the
challenges, errors, and flaws with people data. Research with people
numbers at scale is nearly always imprecise and inexact measuring
instead of precise and exact counting, regardless of how confidently and
how precisely the numbers are presented.

5.3. What to do when you measure instead of count?

We now address what is to be donewhen you find yourself measuring,
but it appears as if you are counting, and you want to alert the reader that
the numbers are measures. You have already taken the first step in
addressing the conundrum in that you are cognizant of the discrepancy.
Now, what else is there to do? There is unlikely to be a single solution
that will completely address the issue in all circumstances; however,
there are five general approaches. The common theme is transparency –

identifying and explicitly acknowledging that the reported numbers are not
precise arithmetic counts but measures with some error rate.

Exploratory Data Analysis: Exploratory data analysis (EDA) is a
philosophical approach of performing initial investigations on datasets
(Tukey, 1977), enabling you to generate dataset characteristics where
you use EDA to understand, summarize, and prepare the data for other
data analysis. EDA entails examining the data for trends and outliers
using visual and quantitative methods. Employing EDA, you can see the
underlying structure of the data (e.g., see whether it is a power law
distribution), identify the influential variables (e.g., see what variables
are correlated), and highlight anomalies (e.g., determine outliers). An
EDA of people data will significantly aid with performing triangulation,
determining confidence intervals, defining margins of error, and calcu-
lating the impact of data uncertainty. By using EDA, for example, you can



Table 3
Implications of error rate range when reporting measures of people numbers.

Magnitude Error
Rate

Definition

Small .2 Error rates of (�) .2 (i.e., 20%) or less are low, indicating
that the measure is acceptably accurate and implying that
the measure can generally be treated akin to a count with
an acknowledged error rate that is small.

Medium .5 Error rates of greater than .2 (i.e., 20%) and less than .7
(i.e., 70%) (�) are medium, implying that the measure has
systemic or other measurement errors that impose
qualifications on it being treated as a count. The error rate
should be explicitly stated and acknowledged as a medium
rate.

Large .7 Error rates of (�) .7 (i.e., 70%) or more are large, implying
that the measure has systemic measurement errors that
generally prohibit it from being treated as a count. The
error rate should be explicitly stated, and the numerical
results should be qualified as possessing validity issues.
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see how your data's aggregate statistics compare to the visual graph of the
data, see what the distribution of the data is, how much data you have,
which variables are correlated, and any key variables that you may be
missing.

Triangulation of Data: In our context, triangulation uses more than
one source for collecting people data. This is data triangulation (Noble &
Heale, 2019). You may also want the conceptualization of collecting that
data to be different, which is theory triangulation (Denzin, 2009). For
example, we employed triangulation in our analytics case study by col-
lecting data from two data sources (i.e., Google Analytics and Sim-
ilarWeb), with each data source approaching the data collection from
different conceptual perspectives (i.e., site-centric for Google Analytic
and panel reliant for SimilarWeb), which allowed for a comparison of the
values between the two approaches. You can also use triangulation to
compare technical aspects of the same conceptual data collection
approach; this is method triangulation (Denzin, 2009). For example, by
using our case study domain of web analytics, you could simultaneously
examine two site centric analytics installations (e.g., Google Analytics
and Matomo, which is an open-source analytics service at the time of
writing) on a set of websites and compare their numbers. You may obtain
different values using different methods or even multiple measurements
using the same method. Therefore, triangulation does not remove the
errors of validity or eliminate the fundamental issue of precision, but it
does help to establish a range of measurement discrepancies.

Reporting of Error Rates: All measures have a degree of uncertainty
that counting does not have, and the variability in measurement results is
an inherent component of the measuring process. When measuring, you
assume that some true value exists for what is being measured and
attempt to find this ideal quantity to the best of your ability. This vari-
ability introduces errors, which represent the difference between the
value you measured and the true value. For our purposes, we are con-
cerned with systematic errors, which are errors inherent in the data
measurement context. It is possible to determine the dispersion of these
errors to some degree or range of accuracy, and this range is the error rate
(Dror, 2020). A low error rate indicates that the measurements are more
accurate, while a high error rate indicates that the values are less accu-
rate. Calculating the error rate will give an idea of the confidence in-
terval, which is a statement of the validity of a measure. In statistics, a
confidence interval refers to the probability that the true value for a
population parameter will fall between two set values. This statistical
probability is often challenging to determine when focused on the data
validity of people numbers. A practical alternate is heuristics, using the
magnitude of the error rates. Uncertainty visualization of the error rate
may improve users’ estimates, particularly for information-rich in-
terfaces (Hullman et al., 2019). Based on comparable statistical measures
such as effect sizes (Cohen, 1992), reasonable rules of thumb are shown
in Table 3. We acknowledge that these are heuristics, and the impact
should be independently assessed for a given domain and dataset
(Sch€afer & Schwarz, 2019). However, as marks on the wall, we offer the
following definitions in Table 3 immediately below.

Estimation of Impact: A final determination is an estimation of the
impact of using a measure instead of a count. In other words, you know
the numbers are not counts, but does it matter? A minor�1% error in the
reported measures is unlikely to cause any shift in the business decision's
direction. Even with large error rates, the impact might be minimal. For
example, in our case study, key metrics between the two analytics plat-
forms were strongly correlated (Jansen et al., 2022). So, if the task was to
rank the websites, the use of measures instead of counts would not have
much substantial impact, as the differences or inaccuracies of the web
analytics tools would not affect decision making negatively, as it appears
the errors are systematic (i.e., the ranking using the two approaches
would be about the same). There are other such examples, such as
comparing researchers using Google Scholar,4 a bibliographic service as
4 https://scholar.google.com/.
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we write this article. Google Scholar is known to have errors (Halevi
et al., 2017). However, if comparing researchers and assuming the errors
are systematic, the errors have minimal impact on scholar ranking. In
other situations, the impact could be very different, and the error rates
could matter a great deal. For example, business decision makers could
makemistakes with even a small margin of error, whichmay have serious
consequences. Therefore, the questions are: ‘how can we know?” and
‘how can we separate the cases where numbers are ‘close enough’? This
must be on a case-by-case basis, and experimentation would seem like a
potential solution through which to identify such cases.

Acknowledging the Measures: Since many data analysis techniques
rely on an assumption of numbers as counts rather than measures, it is an
unreasonable expectation that these measures will not be used as counts.
Therefore, what is reasonable? The use of the measures rather than
counts should be acknowledged in the research article or report, such as
through coverage in the limitations section. The analytics platforms
should also be upfront about error rates. However, you should discuss the
error rates and impacts of the errors as a limitation of the research. So,
how do you report this limitation? The most straightforward way is to
show the value within a range of possible values:

measure(n) ¼ (reported count value�uncertainty (x)) ¼ n�x

The reported count value is the ‘count’ value you used in your
research, and uncertainty is the error rate you determined, knowing that
it is a ‘measure’. The measure is the distribution of the possible values
(i.e., reported count value�uncertainty). In our use case of web analytics,
for example, we can report that the number of unique visitors to the set of
sites is some number (i.e., n), plus or minus some uncertainty value ( �
x). As an example, from our case study using a likelihood of error (Wil-
liamson et al., 2002), as explained in (Jansen et al., 2022):

The total number of unique visitors for all 86 websites was 834.7
million (max ¼ 138.1 million; min ¼ 1,799; med ¼ 4.3 million) re-
ported by Google Analytics …. Based on the issues just outlined, it
seems that, for Google Analytics, a 20% overestimate in monthly
unique visitors to 30% overestimate for more extended periods seems
reasonable. (Jansen et al., 2022). So, the measure of unique visitors is
834.7 million � 166.9 million, where n ¼ 834.7 million and x ¼
�166.9 million.

Explicit acknowledgment does not remove validity errors, but it does
alert the reader to evaluate the research results with this limitation in
mind – i.e., it remains the reader that the numbers are not counts but
measures!

5.4. Summary of implications

For a concise presentation of the discussion given above, Table 4

https://scholar.google.com/


Table 4
Summary of discussion and implications of measuring versus counting.

Reasons Why You
Think You're Counting

Reasons Why You
Want to Count

Actions to Take When You Are
Using Measures Instead of Counts

Statistics Complexity Exploratory Data Analysis
Simplicity Scale Triangulation
Enumeration Reporting of Error Rate

Gauging the Impact
Acknowledging the Measure
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summarizes the reasons for thinking you are counting, reasons for why
you want to count, and what actions to take when measuring instead.

6. Closing remarks

Data validity has been shown over dozens of academic studies
(Onwuegbuzie & Johnson, 2006) to be crucial for the trustworthiness of
findings about people. However, ensuring data validity in real-world
situations remains far from a solved problem. In contrast, when work-
ing with people numbers, the numbers (as exact counts) are wrong and
need to be taken as measures (or estimates), rather than immutable
arithmetic truth. The focus is often on developing more complex models.
Interestingly, in these cases where the data is inaccurate, simpler models
would probably work better, as they generally have low variance
(Brownlee, 2016). When reporting people numbers, unless efforts are
taken to alert the reader that these numbers are not counts but measures,
it is easy for the reader to get lulled into treating these people numbers as
absolute, precise, accurate arithmetic facts. Measurements are neither as
precise nor as accurate as counts. So, if you are presenting people
numbers, do not present numbers from measuring as if they are from
counting, and report the uncertainty of the numbers as a limitation. If you
are consuming numbers about people, you should always take these
people numbers with a ‘grain of salt’5 (West & Bergstrom, 2020).

There are several open questions in this domain of using people
numbers. On the technical side, an interesting notion is developing on-
line analytics systems that can self-monitor and recognize flaws, which
with analytics systems at the time of writing is nearly non-existent.
However, it seems reasonable that platforms such as Google Analytics,
for example, could have capabilities for the self-diagnosis of flaws in
implementation, data collection, data analysis, and metric reporting.
While fundamentally, you might not be able to build systems that can
completely supervise themselves without a knowledge of external busi-
ness goals, it is a worthwhile objective to pursue the boundary – namely,
the point where an analytics system can self-diagnose its successful
implementation and basic data operations.

On the people side, constructing gold standard people data sets
derived by human annotation in posterior labeling requires critical
reevaluation. To view the resulting numbers based on labels from, usu-
ally, crowdsourced labelers as objective truth is flawed. The labels are
relative and subjective and are more likely measures of consensus or
disagreement after the fact. Furthermore, the labels are usually assigned
well after and with limited knowledge of the context in which the textual
expressions were made. Therefore, there needs to be further scrutiny into
how ground truth datasets for AI and ML applications are constructed in
these fields and if the concept of ground truth even applies to some forms
of people data.

Additionally, an area that deserves substantial evaluation is the the-
ory and theoretical constructs (Jansen & Rieh, 2010) that are derived
from or supported by people numbers (Anderson, 2000). If the under-
lying people numbers are often wrong, then it makes conceptual sense
that the theories derived from such people data are also wrong (Ioanni-
dis, 2005). Furthermore, there is a risk that false results become accepted
into the academic body of knowledge and become the bedrock for future
work (Hopf et al., 2019; Moonesinghe et al., 2007). This area has not, to
our knowledge, been well investigated (Graziano, 2016; Shtulman,
2017). Themain question that is raised is ‘howmuch error can there be in
the people numbers before it invalidates the people theory?‘. The answer
to this question has major implications for domains such as advertising,
marketing, tourism, hospitality, and other human-contrived domains
that attempt to concoct domain-specific theories. We leave these open
questions for future research.

We do not mean to be too harsh on those researchers and others
5 Grain of salt: An English language idiom that means to view something with
scepticism.
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collecting, analyzing, and reporting people numbers. The authors of this
article are researchers in the domain of people data and often employ
people numbers. Rather, instead of criticism, we opt for optimism, as “a
faulty measurement made on logical principles is better than none, and
may lead to others with progressive improvement.” (Bowley, 1901, p. 5).
Certainly, having some people numbers is better than having none, and
we believe this is true, even if the reported numbers are measures with
error rates or are vague (Tukey, 1962) and imprecise counts (Wang &
Strong, 1996). However, at the same time, a reality check is also needed
(Coombs, 1964). Working with people numbers can be messy, and those
working with people numbers have an obligation to acknowledge this
messiness and account for it. This reflection piece presents the rationale
for such acknowledgment and offers the means to acknowledge it. So, if
you are working with people numbers, we hope you find these reflections
valuable in your research.

As a limitation, we must mention that there might be people numbers
derived from people data that are counts or very close to actual counts.
There are organizations, for example, that employ people data as part of
their services, control nearly the entire data processing stream, and have
specialists who clean and disambiguate data. One example might be the
number of official marriages in a given county – let us take the U.S. –
which would be a large scale people numbers problem that is still
probably close to counts. Why? Well, in the U.S., marriage licenses are
processed in low level municipalities using a fairly regulated method.
The scale at the municipality level is small – sometimes just a few hun-
dred or thousand people. The results of all these smaller jobs at the
municipality level are reported to states and eventually to the federal
government for aggregation. The census data in some countries is
reportedly very close to counts (US Census Bureau, 2022), although
sampling has sometimes been used (US Census Bureau, 2020), and there
are reports of over/under counting (US Census Bureau, 2022) of popu-
lation subgroups (Jacobsen & Mather, 2020). In the commercial sector,
one could picture an international fast food company, say selling ham-
burgers, getting global hamburger sales data by aggregating the daily
counts at each of its thousands of outlets (Stice, 2019), which is again, a
highly regulated process that is really aggregated smaller jobs. However,
outside of these tightly coupled processes that can be divided into many
small counting procedures, fractal processes, and focused on a narrow
primary data variable, people numbers are usually not counts but
measures.

Let us end our journey concerning people numbers where we began,
with the well-known quote by Kelvin (1883).

When you can measure what you are speaking about, and express it
in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your knowledge is
of a meager and unsatisfactory kind: it may be the beginning of
knowledge, but you have scarcely, in your thoughts, advanced to the
stage of science …. Lord Kelvin [emphasis added]

Note the verb that Kelvin uses – measure! When you can measure
something and express it in numbers, you know something about it.
Kelvin was a researcher of the physical world, considering electricity,
navigation, heat, and temperature. He obviously measured in his fields of
research, and his numbers were probably nearly always measurements.
Error rates were most likely an inherent part of his work. Numbers in the
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scientific method are needed, and we believe that Kelvin is correct –

numbers are essential for scientific inquiry. Then again, we would add that it
is best if the numbers are presented and interpreted correctly.
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